Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 10(3): 400-408, July 2007. ilus, tab
Article in English | LILACS | ID: lil-640485

ABSTRACT

A reliable method for characterizing microbial communities on the basis of their differences in the 16S ribosomal RNA (rRNA) gene sequences in the hot arid zone sandy soils has been optimized. A desert plant (Calligonum polygonoides) was chosen to provide the rhizospheric soil samples, collected from three different agro-ecological locations. Total community DNA was efficiently extracted at small-scale level using direct lysis with hot sodium dodecyl sulphate (SDS), glass bead beating and finally subjecting the sandy soil to liquid nitrogen freeze-thaw cycles. To amplify V3 region of bacterial 16S rRNA gene, universal conserved primers were used. Second round polymerase chain reaction (PCR) was attempted to increase product concentration and to minimize the effect of inhibitory substances. To enhance the detection sensitivity of the denaturing gradient gel electrophoresis (DGGE), the effect of change in template DNA concentration was studied. The separation of bands were greatly enhanced in the fingerprints obtained after the second round of PCR representing low abundant species which were not differentiated at single optimized concentration of DNA.

2.
Electron. j. biotechnol ; 10(2): 230-239, Apr. 15, 2007. graf, tab
Article in English | LILACS | ID: lil-499178

ABSTRACT

Acremonium chrysogenum NCIM 1069 was used for the biosynthesis of cephalosporin-C (CPC) in batch mode of cultivation. The effect of different medium constituents for better yield of CPC was thoroughly investigated. From the results of the fermentation, it was found that ammonium sulphate as inorganic nitrogen source and methionine at the concentration of 0.4 percent are most suitable for higher yield of antibiotic. The variation in the C/N ratio on the biosynthesis of CPC showed that a C/N ratio of 8.0 is most suitable for maximum production of CPC


Subject(s)
Acremonium/metabolism , Cephalosporins/biosynthesis , Bioreactors , Culture Media , Fermentation , Methionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL